24,000 research outputs found

    The default risk of high-yield bonds.

    Get PDF
    This paper investigates the default behavior of original issue rated non-convertible high-yield bonds. The hazard model simultaneously estimates the impact of bond age, firm- and issue-specific characteristics, and changing economic conditions. The specification used models the impact of the time since issuance semi-parametrically, corrects for unobserved heterogeneity and allows for the possibility that outstanding bonds may default in the future. Our findings, based on a sample of 579 individual high-yield bonds issued between 1977 and 1989, suggest that, after controlling for annual changes in economic conditions, default rates increase with age. Bond characteristics at the time of issuance also impact the default behavior. BB rated bonds tend to have significantly lower default rates compared to CCC rated bonds; bonds with higher coupon rates have significantly higher default rates. In addition, high-yield bonds issued prior to 1980 experienced significantly lowerd default rates.Default; Risk; Bonds;

    Broken Symmetry as a Stabilizing Remnant

    Full text link
    The Goldberger-Wise mechanism enables one to stabilize the length of the warped extra dimension employed in Randall-Sundrum models. In this work we generalize this mechanism to models with multiple warped throats sharing a common ultraviolet brane. For independent throats this generalization is straight forward. If the throats possess a discrete interchange symmetry like Z_n the stabilizing dynamics may respect the symmetry, resulting in equal throat lengths, or they may break it. In the latter case the ground state of an initially symmetric configuration is a stabilized asymmetric configuration in which the throat lengths differ. We focus on two- (three-) throat setups with a Z_2 (Z_3) interchange symmetry and present stabilization dynamics suitable for either breaking or maintaining the symmetry. Though admitting more general application, our results are relevant for existing models in the literature, including the two throat model with Kaluza-Klein parity and the three throat model of flavor based on a broken Z_3 symmetry.Comment: 23 pages; v2 minor cosmetic chang

    Semantic annotation in ubiquitous healthcare skills-based learning environments

    No full text
    This paper describes initial work on developing a semantic annotation system for the augmentation of skills-based learning for Healthcare. Scenario driven skills-based learning takes place in an augmented hospital ward simulation involving a patient simulator known as SimMan. The semantic annotation software enables real-time annotations of these simulations for debriefing of the students, student self study and better analysis of the learning approaches of mentors. A description of the developed system is provided with initial findings and future directions for the work.<br/

    Switching dynamics of spatial solitary wave pixels

    Get PDF
    Separatrices and scaling laws in the switching dynamics of spatial solitary wave pixels are investigated. We show that the dynamics in the full model are similar to those in the plane-wave limit. Switching features may be indicated and explained by the motion of the (complex) solitary wave amplitude in the phase plane. We report generalization, into the domain of transverse effects, of the pulse area theorem for the switching process and a logarithmic law for the transient dynamics. We also consider, for what is the first time to our knowledge, phase-encoded address of solitary pixels and find that a near-square-wave temporal switching pattern is permitted without (transverse) cross switching

    Chaos in a modified Henon-Heiles system describing geodesics in gravitational waves

    Get PDF
    A Hamiltonian system with a modified Henon-Heiles potential is investigated. This describes the motion of free test particles in vacuum gravitational pp-wave spacetimes with both quadratic ("homogeneous") and cubic ("non-homogeneous") terms in the structural function. It is shown that, for energies above a certain value, the motion is chaotic in the sense that the boundaries separating the basins of possible escapes become fractal. Similarities and differences with the standard Henon-Heiles and the monkey saddle systems are discussed. The box-counting dimension of the basin boundaries is also calculated.Comment: 11 pages, 7 figures, LaTeX. To appear in Phys. Lett.

    Neutrinos that violate CPT, and the experiments that love them

    Get PDF
    Recently we proposed a framework for explaining the observed evidence for neutrino oscillations without enlarging the neutrino sector, by introducing CPT violating Dirac masses for the neutrinos. In this paper we continue the exploration of the phenomenology of CPT violation in the neutrino sector. We show that our CPT violating model fits the existing SuperKamiokande data at least as well as the standard atmospheric neutrino oscillation models. We discuss the challenge of measuring CP violation in a neutrino sector that also violates CPT. We point out that the proposed off-axis extension of MINOS looks especially promising in this regard. Finally, we describe a method to compute CPT violating neutrino effects by mocking them up with analog matter effects.Comment: 17 pages, 3 eps figure

    Bulge-Disk Decompositions and Structural Bimodality of Ursa Major Cluster Spiral Galaxies

    Full text link
    We present bulge and disk (B/D) decompositions of existing K'-band surface brightness profiles for 65 Ursa Major cluster spiral galaxies. This improves upon the disk-only fits of Tully et al. (1996). The 1996 disk fits were used by Tully & Verheijen (1997) for their discovery of the bimodality of structural parameters in the UMa cluster galaxies. It is shown that our new 1D B/D decompositions yield disk structural parameters that differ only slightly from the basic fits of Tully et al. and evidence for structural bimodality of UMa galaxies is maintained. Our B/D software for the decomposition of 1D surface brightness profiles of galaxies uses a non-linear minimization scheme to recover the best fitting Sersic bulge and exponential disk while accounting for the possible presence of a compact nucleus and spiral arms and for the effects of seeing and disk truncations. In agreement with Tully & Verheijen, we find that the distribution of near-infrared disk central surface brightnesses is bimodal with an F-test confidence of 80%. There is also strong evidence for a local minimum in the luminosity function at M_K' ~ -22. A connection between the brightness bimodality and a dynamical bimodality, based on new HI line widths, is identified. The B/D parameters are presented in an Appendix.Comment: Accepted for publication in MNRA

    Visual BFI: an Exploratory Study for Image-based Personality Test

    Full text link
    This paper positions and explores the topic of image-based personality test. Instead of responding to text-based questions, the subjects will be provided a set of "choose-your-favorite-image" visual questions. With the image options of each question belonging to the same concept, the subjects' personality traits are estimated by observing their preferences of images under several unique concepts. The solution to design such an image-based personality test consists of concept-question identification and image-option selection. We have presented a preliminary framework to regularize these two steps in this exploratory study. A demo version of the designed image-based personality test is available at http://www.visualbfi.org/. Subjective as well as objective evaluations have demonstrated the feasibility of image-based personality test in limited questions

    Solving the Cooling Flow Problem through Mechanical AGN Feedback

    Full text link
    Unopposed radiative cooling of plasma would lead to the cooling catastrophe, a massive inflow of condensing gas, manifest in the core of galaxies, groups and clusters. The last generation X-ray telescopes, Chandra and XMM, have radically changed our view on baryons, indicating AGN heating as the balancing counterpart of cooling. This work reviews our extensive investigation on self-regulated heating. We argue that the mechanical feedback, based on massive subrelativistic outflows, is the key to solving the cooling flow problem, i.e. dramatically quenching the cooling rates for several Gyr without destroying the cool-core structure. Using a modified version of the 3D hydrocode FLASH, we show that bipolar AGN outflows can further reproduce fundamental observed features, such as buoyant bubbles, weak shocks, metals dredge- up, and turbulence. The latter is an essential ingredient to drive nonlinear thermal instabilities, which cause the formation of extended cold gas, a residual of the quenched cooling flow and, later, fuel for the feedback engine. Compared to clusters, groups and galaxies require a gentler mechanical feedback, in order to avoid catastrophic overheating. We highlight the essential characteristics for a realistic AGN feedback, with emphasis on observational consistency.Comment: Accepted by AN; 4 pages, 2 figure
    corecore